
Proposal of a Security Solution for Preventing Password Autofill in Specific
Phishing Web Pages
Somchai Chatvichienchai

 Department of Information Security, Faculty of Information System, University of Nagasaki

somchaic@sun.ac.jp

Abstract— Passwords are the primary authentication method of the web services. Password managers, which are
provided by web browser vendors and third party software vendors, relief burden of remembering distinguished
password of each web service. However, password managers contain so much confidential information that is
valuable to cyber criminals, password manager is often the target of hackers. Much effort has been done for
defending confidential information stealing problems such as the attack of the tracking script, etc. Recently, new
phishing pages that deceive password managers to autofill confidential information into the fields that are
invisible to the naked eyes. The experiment which is done by this work shows that the above phishing pages can be
used to steal stored passwords from browsers' password managers. This problem has not yet been solved by web
browser developers. The objective of this article is to propose a security solution for preventing password autofill
in these phishing pages. The proposed solution turns off autofill function of the web browser that the user is using.
Based on analysis of HTML source of login page, the proposed solution informs the existence of hidden fields and
has the user confirm whether to permit the web browser to perform auto-filling on the login page.
Index Terms— autofill, password, solution, web.

ISSN - 2456-8074
http://sijitcs.com

ISSN - 2456-8074
http://sijitcs.com

SIJITCS Vol.: 03 ll Issue I ll Pages 01-06 ll Jan 2019

I. Introduction:
Passwords are the primary authentication method of
the web services. The previous works [1], [2] indicate
that a user tends to choose bad passwords and/or reuse
passwords over multiple sites. This behavior increases
the potential damage if a password is stolen, cracked,
or if a service that has access to it is compromised,
since the attacker will be able to reuse it on all online
services that share the same password. In order to
relief burden of remembering a password of each web
service, browser vendors as well as third party
software vendors have developed password managers
capable of storing these secret credentials for the
users. When the users visit a webpage and fill out a
login form, browser's password manager asks the
users if they want to save the login details. Since
browser's password manager automatically fills in
login information based on the current domain of the
web page, it provides some protection against typo-
squatting and phishing attacks [3], [4].
Since browser's password manager contains so much
confidential information (such as email address and
passwords, etc.) that is valuable to cyber criminals, it
is often the target of hackers. Some existing works [5],
[6] have demonstrated how an attacker injects a
tracking script written by JavaScript into web pages
that are vulnerable to XSS (cross site scripting)
attacks. When the user browses that web page, the
tracking script inserts a malicious login form that is
invisible to the naked eye onto the webpage, and
password manager automatically fills in the user's

login information of the website that the user is
visiting. By this way, the tracking script snaffles up
user's login information from the invisible form's field
and sends the login information in form of a hash value
to the attacker's server. The most convenient feature of
password manager of web browser is also one of the
weakest links in its security.
Some existing works focus on confidential
information leak due to autofill of browsers. However,
there exists no work providing a perfect prevention
against the attack of the tracking script. Silver et at. [5]
proposed a defense method that always requires some
user interaction before auto-filling a form. Their
proposed method will prevent sweep attacks where
multiple passwords are extracted without any user
interaction. User interaction can come in the form of a
keyboard shortcut, clicking a button, selecting an
entry from a menu, or typing into the user name field.
However, the defense method can't prevent browsers
from auto-filling password into the hidden field of the
new phishing page. After the user clicks the submit
button, the secretly auto-filled password will be sent to
the third party. The scenario of the password attack
will be presented in the next section.
The objective of this article is to propose a Browser
Autofill Control System to prevent undesired autofill
of passwords in these phishing pages. The proposed
system disables the autofill feature of the web browser
that the user is using. Given a URL address of the login
web page, the proposed system analysts HTML data of
the login page and display the names or IDs of fields

 Journal of Innovative Research in IT & Computer Science - ISSN - 2456-8074

1

IS
S

N
 -

 2
45

6-
80

74

h
tt

p
:/

/s
ij

it
cs

.c
om

ISSN - 2456-8074
http://sijitcs.com

ISSN - 2456-8074
http://sijitcs.com

SIJITCS Vol.: 03 ll Issue I ll Pages 01-06 ll Jan 2019

that are the target of autofill. By this way, the user can
recognize dangerous hidden fields and can decide whether
or not to permit the browser to perform autofill on the login
page.
II. Scenario of Password Stealing:
In 2017, Gibbs has posted an article [7] describing a new
threat on password managers. The article claims that many
web browsers, including Google's Chrome, Apple's Safari
and Opera, as well as some plugins and utilities such as:

LastPass, can be tricked into giving away a user's
personal information through their profile-based
autofill systems. He has revealed how such attacks
work on a demonstration phishing page [8]. The
phishing page has a form in which only the fields
“name” and “email” can be seen, along with a “send”
button. However, the source code of the web page
harbors some hidden confidential information from
the user: there are six other fields (phone,
organization, address, postal code, city and country),
which the browser also automatically populates if the
user has activated the autofill function. These six
fields cane not be noticed by the user since these fields
are defined as static inputted textboxes whose
positions are set by negative margins.
In this work, an experiment using the above technique
to steal passwords from password managers of
browsers has been done. The result of experiment

shows the successfulness of password stealing. Figure
1 (a) depicts a screenshot of a sample phishing
webpage which displays only the email textbox and a
button for next operation. This phishing page can be
implemented into the website where users have
already saved their passwords by password managers.
The implementation can be done internal offenders of
the website or by hackers who can penetrate security
protection of the website. Figure 1 (b) shows a part of
HTML source of the phishing webpage. Notice that
password textbox is defined by the second input tag.
However, the password's textbox doesn't appear in
Fig.1 (a) since its position is outside screen area of web
browser according to <p style="margin-left:-
500px"> tag. Note that <p style="margin-top:-
500px"> tag can also be used to make password's
textbox disappear from screen area of web browser.
This trick can also be done by using CSS (Cascading
Style Sheets). As shown in Fig. 2, URL address bar
o u t p u t t e d “ h t t p : / / 1 9 2 . 1 6 8 . 1 . 1 / L o g i n . h t m l
?username=aaa%40bbb.com:

&pass=MyPassword” after the “next” button is
clicked.

It includes user's password that is automatically
filled by password manager of web browser. Password
managers autofill the password as far as this phishing
page is implemented in the web server which is under
the same domain name that is recorded by password
managers.
What makes this scenario tricky is that internal
offenders of the website or hackers add the third-party
scripts to the web page, making it as a part of the
website's own code. The web browsers' built-in
protections, which isolate external third-party scripts
from the site's code, don't work in that case. Therefore,
web browsers have no mechanism to handle this
problem. However, it's very surprising that this serious
problem has not yet been fixed after Gibbs's article
opened to public in 2017. At this point, there doesn't
appear any solution to this problem other than turning
off autofill function of user's browser. In the
meantime, if the users decide to leave autofill turned
on due to its general convenience factor, they'll need to

 Journal of Innovative Research in IT & Computer Science - ISSN - 2456-8074

2

IS
S

N
 -

 2
45

6-
80

74

h
tt

p
:/

/s
ij

it
cs

.c
om

ISSN - 2456-8074
http://sijitcs.com

ISSN - 2456-8074
http://sijitcs.com

SIJITCS Vol.: 03 ll Issue I ll Pages 01-06 ll Jan 2019

be even more diligent about making sure they're only
visiting known and trusted websites.
III. The Architecture of the Proposed System:
In order to prevent password managers from autofill of
passwords on the phishing webpages described in the
previous section, this article proposes Browser
Autofill Control System (BACS, for short). The system
is developed to be an interface between users and web
browsers. The architecture of BACS is shown in Fig.3.
A user will login web page thru BACS. After the
system is started by users, it will disable autofill
features of web browsers of the user's computer. The
system has Login Page Database (LPDB for short),
which stores data records each of which consists of a
URL address and a hash value of HTML data of the
login page which has been confirmed by the user. In
case the login page is defined to work with a CSS file, a
hash value of the CSS file will also be added into the
record. The reason of storing these data in form of hash
values is to decrease the:

burden of storing and comparing these data. The hash
value of HTML data of LPDB record is used to
compare with the hash value computed from HTML
data of the login page accessed by the user in order to
justify whether they are the same content. A hash value
is computed by a hash algorithm [9]. The system
employs a secure hash algorithm 256 (SHA256, for
short) which is adopted as one of the most secure ways
to protect digital information. SHA256 converts a data
string of HTML data of a login page into an output
256-bit string. The output string is generally much
smaller than the original data. SHA256 is designed to
be collision-resistant [10], meaning that there is a very
low probability that the same 256-bit string would be
created by different data.
As shown in Fig. 3, BACS displays all input textboxes
(including hidden textboxes) in the login page so that
the user can decide whether to allow password
manager of the browser to automatically fill the stored

password and other values to these textboxes. If the
user decides to allow autofill, the system will enable
autofill of the browser and will restart the browser to
read the login page.
IV. Methodology of Preventing Password Stealing:
Figure 4 illustrates the flowchart of justifying whether
autofill of the web browser should be permitted. When
BACS is installed, the user declares which browser
will be controlled by the system. At diagram 1, the
system disables autofill function of the browser. The
next section will explain methods that disable autofill
functions of some major browsers. Given a URL
address of a login page that a user wants to read, the
system (see diagram 2) instructs the browser to read
the login page and associated CSS file (if any). As
shown in diagram 3, the system checks the existence
of input tags of textboxes in the web page. If there exist
input tags of textboxes defined in the webpage, the
system computes hash value of the HTML data (see
diagram 4). In case the HTML data is associated with a
CSS file, the system also computes hash value of the
CSS file.
As shown in diagram 5, the system extracts the
domain name from the URL address and uses it as a
key to find the corresponding record from LPDB.
Existence of a LPDB record whose hash values are the
same as those of diagram 4 denotes that the user have
already permitted auto-filling of the login page.
Therefore, the system automatically enables autofill
of the browser. In diagram 9, the system restarts the
browser to make autofill feature of the browser to
become effective. Thereafter the system has the
browser opened the login page.
At diagram 6, if the system found that there exist no
LPDB record having the specified domain name or
there exist a record having the specified domain name but
its hash values are not the same as those computed at
diagram 5, it displays the names or IDs of input tags of
textboxes of the login page. As shown in diagram 7, the user
checks whether there exist hidden fields by comparing the
fields that the system reported and those that appear in
screen of the browser. If the user found that there does not
exist hidden password field, she permits the autofill of the
browser. In case there exist no record having the same
domain name, the system adds a new LPDB record with the

domain name and its corresponding hash values.
Otherwise, the system updates the LPDB record with
the new hash values computed at diagram 4 (see
diagram 8). The system proceeds to the process of
diagram 9.

 Journal of Innovative Research in IT & Computer Science - ISSN - 2456-8074

3

IS
S

N
 -

 2
45

6-
80

74

h
tt

p
:/

/s
ij

it
cs

.c
om

ISSN - 2456-8074
http://sijitcs.com

ISSN - 2456-8074
http://sijitcs.com

SIJITCS Vol.: 03 ll Issue I ll Pages 01-06 ll Jan 2019

V. Methodology for Disabling and Enabling
Autofill of Web Browsers:
This section introduces methods that disable and
enable the autofill (in other word, autocomplete)
feature of Internet Explorer (IE, for short) and Mozilla
Firefox (Firefox, for short) without user intervention.
Both web browsers use the option “autocomplete” to
remember the typed text in a web form.

Figure 5 shows “AutoComplete Settings” of IE
version 11 which autocomplete feature is enabled. In
order to disable this

feature without human intervention, the system
executes the set of registry scripts shown in Fig. 6. The
system executes these scripts by using methods and
properties of WScript object [11]. CreateObject
method of WScript object is one of the most important
functions in WSH script that can manipulate various
components of the Windows environment.
As shown in Fig. 6, the first script disallows IE to show
a list of matching URLs in address bar, if the user has
accessed the website earlier. This script is necessary to
prevent IE from

 Journal of Innovative Research in IT & Computer Science - ISSN - 2456-8074

4

IS
S

N
 -

 2
45

6-
80

74

h
tt

p
:/

/s
ij

it
cs

.c
om

ISSN - 2456-8074
http://sijitcs.com

ISSN - 2456-8074
http://sijitcs.com

SIJITCS Vol.: 03 ll Issue I ll Pages 01-06 ll Jan 2019

auto-filling the URL address that includes a user-id
and a password. The second script disallows IE to call
previously typed inputs of a field on the web forms.
Therefore IE will

not suggest from the previous entries existing in the
list, if any. The third script disallows IE to call the
saved passwords on web forms. The fourth script
disallows IE to prompt to save passwords on web
forms. Therefore, the user can't click the saved
password the next time the user visits the page. The
last script deletes a windows registry key that disables
password caching. Therefore, the user can have the
browser saved the password that she has just inputted.
In other word, the user can still change “user name and
password on forms” and can prompt to save the
password. Figure 7 shows AutoComplete Settings of
IE version 11 after all the registry scripts of Fig. 6 have
already been executed. Figure 8 shows a set of scripts
that should be executed in order to enable
Autocomplete feature of IE version 11.
Now let's consider methods of disabling and enabling
autocomplete feature of Firefox. Firefox has the
ability to customize installations using a configuration
file called mozilla.cfg. This file should be created in
the Firefox install directory, and each time Firefox is
loaded it's checked for any custom configurations that
have been added.

In order to disable autocomplete feature of Firefox,
the system uses the mozilla.cfg file to lock
signon.rememberSignons to false [12]. This is done by
creating the mozilla.cfg file (if does not exist) and
adding the following two lines into the file.

Figure 9 illustrates an example of scripts that add the
above two lines into the mozilla.cfg file. To enable
autocomplete feature of Firefox, the system deletes the
above two lines from the mozilla.cfg file. Firefox
should be restart in order to make the update

effectively.
VI. Related Work:
Most research in the area of password managers
focused mainly on three different aspects: generating
pseudo-random and unique passwords for each single
Web application based one some master secret [13],
storing passwords in a secure manner [14] and
protecting users from phishing attacks [15]. Using
XSS attacks for stealing autofilled passwords has also
been explored by Stock et al. [16]. They suggested that
the password managers can prevent such attacks by
using a placeholder dummy password for auto-filling
and replacing it with the original one just before
submitting the login form to the remote server.
Blanchou et al. [17] describe several weaknesses of
password manager browser extensions and implement
a phishing attack that demonstrates the danger of
automatic autofill. They suggest that password
managers prevent the cross-domain submission of
passwords. Unlike these previous work, this work
have shown that an attacker can steal autofilled
password by using specially crafted forms whose
password fields don't appear in web page.
Conclusion:
This article has demonstrated that current built-in
password managers of web browsers are vulnerable to
special hidden field attacks targeting the stored
passwords. This article has identified the root cause of
the problem, namely the fact that password managers
automatically fill out hidden password field with the
clear-text password which is subsequently sent to the
third party. In order to solve this problem, Browser
Autofill Control System is proposed. Since the
proposed system is developed to be an interface
between users and web browsers, users can
continuously use their web browsers as usual. Based
on login page analysis, the system displays all input
textboxes (including hidden textboxes) in the login
page so that the user can decide whether or not to allow
the browser to autofill password and other values to
these textboxes. In order to abbreviate user
confirmation on the login page which auto-filling has
already been permitted, the system stores hash values
computed from the login page and its CSS file. These
values are used to verify whether there exists any
update in the login page and CSS file accessed by the
user next time. If there is no update in the login page
and its CSS file, the system will automatically permit
the autofill on the login page.
 References:

 Journal of Innovative Research in IT & Computer Science - ISSN - 2456-8074

5

IS
S

N
 -

 2
45

6-
80

74

h
tt

p
:/

/s
ij

it
cs

.c
om

ISSN - 2456-8074
http://sijitcs.com

ISSN - 2456-8074
http://sijitcs.com

SIJITCS Vol.: 03 ll Issue I ll Pages 01-06 ll Jan 2019

[1] B. Ives, K. R. Walsh, and H. Schneider, "The
domino effect of password reuse," Communications.

ACM Volume 47, Issue 4, pp. 75-78, 2004.
[2] M. L. Mazurek, S. Komanduri, T. Vidas, L. Bauer, N.

Christin, L. F. Cranor, P. G. Kelley, R. Shay, and B. Ur,
"Measuring password guess ability for an entire
university, " In Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security
(CCS '13). ACM, New York, NY, USA, pp. 173-186,
2013.

[3] R. Dhamija, J. Tygar, and M. Hearst, "Why Phishing
Works, " In SIGCHI conference on Human Factors in
computing systems, New York, USA, 2006. ACM.

[4] B. Englert and P. Shah, "On the Design and
Implementation of a secure Online Password Vault," In
ICHIT 09. ACM Press, 2009.

[5] B. Stock and M. Johns, "Protecting users against XSS-
based password manager abuse, " In Proceedings of the
9th ACM symposium on Information, computer and
communications security (ASIA CCS '14), pp. 183-
194, 2014.

[6] D. Silver, S. Jana, D. Boneh, E. Chen and C. Jackson,
"Password Managers: Attacks and Defenses," in
Proceeding of 23rd USENIX Security Symposium, pp.
449-464, 2014.

[7] S. Gibbs, “Browser autofill used to steal personal
details in new phishing attack”, https://www
.theguardian.com /technology/2017/jan/10/browser-
autofill-used-to-steal-personal-details-in-new-
phising-attack-chrome-safari, posted 2017/1/10.

[8] Browser Autofill Phishing, https://anttiviljami
.github.io/browser-autofill-phishing/, seen 2019/2/19.

[9] P. Rogaway, T. Shrimpton, "Cryptographic Hash-
Function Basics: Definitions, Implications, and
Separations for Preimage Resistance, Second-
Preimage Resistance, and Collision Resistance," in
Proceedings of Fast Software Encryption(FSE 2004),
Lecture Notes in Computer Science, Vol. 3017,
Springer-Verlag, pp. 371-388, 2004.

[10] A. W. Appel. Verification of a Cryptographic Primitive:
SHA-256. ACM Trans. Program. Lang. Syst. Vol. 37,
Issue 2, Article 7, 2015.

[11] Microsoft, "How to use the Windows Script Host to
read, write, and delete registry keys", https://support
.microsoft.com/en-ph/help/244675/how-to-use-the-
windows-script- host-to-read-write-and-delete-
registry-k, seen 2019/2/18.

[12] Mozilla, "How to permanently disable the save
password feature in firefox?", https://support
.mozilla.org /ja/questions/1158069, seen 2019/2/18.

[13] S. Chiasson, P. C. Van Oorschot, and R. Biddle, "A
usability study and critique of two password
managers," In 15th USENIX Security Symposium
(2006), pp. 1-16.

[14] R. Zhao, and C. Yue, "All your browser-saved
passwords could belong to us: A security analysis and a
cloud-based new design," In Proceedings of the third
ACM conference on Data and application security and

privacy (2013), ACM, pp. 333-340.
[15] Z. E. Ye, S. Smith, and D. Anthony, "Trusted paths for

browsers," in ACM Transactions on Information and
System Security (TISSEC) 8, 2 (2005), pp.153-186.

[16] B. Stock and M. Johns, "Protecting Users Against XSS
based Password Manager Abuse," In Proceedings of
the 9th ACM symposium on Information, computer
and communications security, pp. 183-194, 2014.

[17] M. Blanchou and P. Youn. Password managers:
Exposing passwords everywhere, https://isecpartners
.github.io /whitepapers/passwords/2013/11/05/
Browser-Extension-Password-Managers.html.

 Journal of Innovative Research in IT & Computer Science - ISSN - 2456-8074

6

IS
S

N
 -

 2
45

6-
80

74

h
tt

p
:/

/s
ij

it
cs

.c
om

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6

